MT26 UTBM

UTBM

Travaux dirigés MT26

TD1: Intégrales impropres

Exercice 1. Calculer

- 1. $\int_0^1 t^{-1/3} dt$,
- 2. $\int_1^2 \frac{dt}{t \ln t}$ et $\int_2^\infty \frac{dt}{t \ln t}$ (on pourra effectuer le changement de variable $u = \ln t$),
- 3. $\int_0^\infty \frac{t+1}{e^t} dt$ (on pourra faire une intégrations par parties),
- **4.** et $\int_0^{+\infty} \frac{\ln(t)}{t^2+1} dt$ (on pourra poser le changement de variable $x = \frac{1}{t}$.

Exercice 2. Étudier la convergence de $\int_1^\infty t^\alpha e^{-t} dt$, $\alpha \ge 0$.

Exercice 3. Étudier la convergence des intégrales :
$$I_1 = \int_2^{+\infty} \frac{t}{\ln(t)} \mathrm{d} \, t \quad I_2 = \int_0^{+\infty} (-2x+3) e^{-2x} \mathrm{d} \, x \quad I_3 = \int_1^{+\infty} \frac{x-2}{x^4+x^2} \mathrm{d} \, x \quad I_4 = \int_0^1 \frac{t}{\ln(t)} \mathrm{d} \, t \\ I_5 = \int_0^1 \ln(x) \mathrm{d} \, x \quad I_6 = \int_0^1 \frac{\mathrm{d} \, x}{\ln(x)} \quad I_7 = \int_0^1 \frac{1}{1-\sqrt{1-t}} \mathrm{d} \, t \quad I_8 = \int_0^1 \frac{e^x-1}{x\sqrt{x}} \mathrm{d} \, x$$

Exercice 4. Étudier l'intégrabilité de $t \mapsto f_n(t) = \ln(t)^n$ pour $n \in \mathbb{Z}$ sur les intervalles]0,1[, puis sur $[2,+\infty[$.

Exercice 5. Étudier la nature de l'intégrale $\int_1^{+\infty} \frac{x^{\alpha}}{\sqrt{\ln(x)}} dx$ selon les valeurs de $\alpha \in \mathbb{R}$.

Exercice 6. Soient 2 polynômes P et Q. Étudier l'intégrabilité sur [0,1] de $P(t).Q(\ln(t))$.

Exercice 7. Étudier l'intégrabilité sur $]1, +\infty[$ de $\frac{\ln(t)}{t(t^2-1)}$.

Exercice 8. Étudier l'intégrabilité sur]0,a] (0 < a < 1) et $[b,+\infty[$ (1 < b) de $\frac{\ln|1-t|}{t^{\frac{5}{2}}}$ $\frac{\ln(1+t)}{t^{\frac{3}{2}}}.$

Exercice 9. Préciser le lien (implications) entre les assertions suivantes :

- i) f intégrable sur $[a, +\infty[$,
- ii) $\lim_{x\to+\infty} f(x) = 0$.

Prouver ou illustrer par un contre exemple.

Exercice 10. Étudier la convergence de l'intégrale $I = \int_0^{+\infty} \sin(x^2) dx$.

Exercice 11. Étudier, suivant les valeurs de $\alpha > 0$, la convergence simple de l'intégrale $\int_0^{+\infty} \frac{\sin x}{x^{\alpha}} \, \mathrm{d}x.$

Exercice 12. Donner le développement limité à l'ordre 3 au voisinage de $+\infty$ de la fonction $x \mapsto \sin(1/x)$. L'intégrale $\int_1^{+\infty} x \cdot \sin(x) \cdot \sin(\frac{1}{x}) dx$ est-elle convergente?

Exercice 13. Montrer que $\int_1^{+\infty} \frac{\cos(x)}{x} dx$ est convergente. L'est-elle absolument?

Exercice 14. Soit la fonction gamma définie sur \mathbb{R}_+^* par $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$.

1. Déterminer les valeurs de x pour lesquels $\Gamma(x)$ converge.

- **2.** Déterminer une relation entre $\Gamma(x)$ et $\Gamma(x-1)$, pour x>1. Calculer $\Gamma(1)$ et en déduire les valeurs de la fonction Gamma sur \mathbb{N}^* .
- 3. Utiliser la fonction Gamma pour calculer les intégrales :

$$I_1 = \int_0^{+\infty} x^3 \cdot e^{-x} dx, \ I_2 = \int_0^{+\infty} x^6 e^{-2x} dx.$$

Exercice 15. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \int_{n\pi}^{(n+1)\pi} e^{-x} \sin(x) dx$.

- 1. Déterminer une relation entre u_{n+1} et u_n . En déduire la nature de $(u_n)_{n\in\mathbb{N}}$.
- **2.** Exprimer u_n en fonction de u_0 et n.
- 3. Étudier la limite de la suite $(v_n)_{n\in\mathbb{N}}$ définie par $\forall n\in\mathbb{N}, v_n=\sum_{k=0}^{n-1}u_k$ et la valeur de l'intégrale $I=\int_0^{+\infty}\mathrm{e}^{-x}\sin(x)\,\mathrm{d}x.$

Exercice 16. Soit la fonction $f(x) = \int_0^{+\infty} \frac{\ln(t)}{x^2 + t^2} dt$.

- 1. Déterminer le domaine de définition de f et montrer qu'elle est paire.
- 2. Calculer f(1) à l'aide du changement de variable $u = \frac{1}{t}$. En déduire une forme explicite de f.
- 3. Étudier f et tracer sa courbe représentative.

Séries numériques

Exercice 17. Étudier la convergence des séries de terme général

$$u_n = 2^{-\frac{1}{n}}$$
 $v_n = \frac{1}{n} \ln(1 + \frac{1}{n^2})$ $w_n = \frac{1}{\ln(n)^n}$
 $x_n = e^{-\sqrt{n}}$ $y_n = \frac{n!}{n^n}$ $z_n = (\ln(n))^{-\ln(n)}$ $t_n = (1 + \sqrt{n})^{-n}$.

Exercice 18. Nature de la série de terme général

$$u_n = \frac{5}{\sqrt{n} + 7.(-1)^n}.$$

Exercice 19. Soit $a \in \mathbb{R}$, déterminer la nature de la série de terme général

$$u_n = \frac{1}{(2n)!} \prod_{k=1}^{n} (a+k).$$

Exercice 20. Étudier les séries de terme général $(n \in \mathbb{N})$:

1.
$$u_n = \frac{2^n}{n^2}$$
, 3. $u_n = \frac{2^n}{n!}$, 5. $u_n = \ln\left(\frac{1+\tan\frac{1}{n^2}}{1-\tan\frac{1}{n^2}}\right)$, 4. $u_n = \frac{n^3}{5^n+n}$,

Exercice 21. Discuter, suivant α , la nature des séries de terme général :

1.
$$u_n = \frac{(n!)^{\alpha}}{n^n}$$
, $\alpha \in \mathbb{R}$,
2. $u_n = \frac{2^n}{n^2} \sin^{2n} \alpha$ avec $0 < \alpha \leqslant \frac{\pi}{2}$,

Exercice 22. Montrer que la série de terme $u_n = 3^{\frac{1}{2n-1}} - 3^{\frac{1}{2n+1}}$ est convergente et calculer sa somme $(n \ge 1)$.

Exercice 23. Montrer que la série de terme $u_n = \ln \frac{(n+1)^2}{n(n+2)}$ est convergente et calculer sa somme $(n \ge 1)$.

Exercice 24. Déterminer la nature des séries de terme général :

1.
$$(\frac{n+3}{2n+1})^{n \ln n}$$
, 3. $\frac{1}{n+(-1)^n \sqrt{n}}$, 5. $\frac{k^n}{n^k}$, $k \in \mathbb{N}$. 2. $\frac{\sqrt{n(n-1)}}{n^3 - 2\sqrt{n} + 3 \ln n}$, 4. $\frac{1}{n} \sin \frac{\pi}{\sqrt{2n}}$,

Exercice 25. Grâce à la comparaison avec une intégrale, déterminer un entier n tel que

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > 10.$$

Exercice 26. 1. Calculer la dérivée de la fonction ln(ln x),

2. En déduire la nature de la série de terme général $u_n = \frac{1}{n \ln(n) (\ln(\ln(n)))^{\alpha}}, \ \alpha > 0.$

Exercice 27. Déterminer la nature de la série de terme général $(n \in \mathbb{N})$:

1.
$$u_n = \frac{(-1)^n}{n^2 - n^3}$$
, **2.** $u_n = \frac{\sin n}{n^n}$, **3.** $u_n = (-1)^n \sin \frac{\sqrt{n+1}}{n}$.

Exercice 28. Déterminer un équivalent v_n de u_n quand n tend vers l'infini avec

$$\forall n \in \mathbb{N}^*, u_n = \frac{(-1)^n n + \sqrt{n}}{n\sqrt{n}}.$$

Étudier la convergence de $\sum u_n$ et $\sum v_n$. Conclusion.

Exercice 29. Étudier la convergence de la série de terme général

$$u_n = \frac{1 + (-1)^n \sqrt{n}}{1 + n}.$$

Exercice 30. Donner le développement limité à l'ordre 2 au voisinage de 0 de la fonction $x \mapsto \ln(1+x)$. Soit α un réel supérieur à $\frac{1}{4}$, donner, en fonction de α , la nature de la série de terme général

$$u_n = \ln\left(1 + \frac{(-1)^{n-1}}{n^{\alpha}}\right)$$

Exercice 31. À l'aide des développements limités, étudier la convergence de la série de terme général :

$$u_n = \frac{(-1)^n \cdot \sqrt{n} \cdot \sin(\frac{1}{\sqrt{n}})}{n + (-1)^n}$$

Exercice 32. Déterminer, pour les séries suivantes, une majoration de l'erreur commise en remplaçant la somme de la série par la somme de ses n premiers termes. Si possible, préciser s'il s'agit d'une valeur par excés ou par défaut.

$$S_1 = \sum \frac{(-1)^n}{n}, \quad S_2 = \sum \frac{1}{n!}, \quad S_3 = \sum \frac{1}{n^2}, \quad S_4 = \sum \frac{(-1)^n}{\ln(n)}$$

Exercice 33. Soit $(a_n)_{n\geqslant 0}$ une suite de nombres réels, positifs ou nuls, décroissante et de limite 0. Étudier la convergence des 2 séries $\sum a_n \cos(nx)$ et $\sum a_n \sin(nx)$.

Exercice 34. Étudier la convergence des séries

$$S_1 = \sum \frac{n(2+i)^n}{(2^n)}, \quad S_2 = \sum \frac{n(2-i)^n}{3^n}, \quad S_3 = \sum \frac{i^n}{n}, \quad S_4 = \sum \frac{1}{(n+i)\sqrt{n}}$$

Exercices supplémentaires.

Exercice 35. (difficile)

Soit $\alpha \in \mathbb{R}$. Étudier, en fonction de α , la nature de la série

$$\sum \left(\frac{n-1}{n+1}\right)^{n^{\alpha}}.$$

Exercice 36. À l'aide des développements limités, étudier la convergence de la série de terme général :

$$u_n = e^{\frac{(-1)^n}{\sqrt{n}}} - 1$$

Exercice 37. À l'aide des développements limités, étudier la convergence de la série de terme général :

$$v_n = \ln\left(\frac{\sqrt{n} + (-1)^n}{\sqrt{n+a}}\right).$$

Exercice 38. Étudier la série de terme général

$$\begin{cases} u_{2n} = \frac{1}{2n} \\ u_{2n+1} = \frac{2}{n+1} \end{cases}$$

TD 3 : Suites et séries de fonctions

Exercice 39. Étudier la convergence simple et la convergence uniforme, sur leur ensemble de définition, des suites de fonction suivantes :

1.
$$f_n: \mathbb{R}_+ \longrightarrow \mathbb{R}, \ f_n(x) = \frac{1}{nx+1},$$

2.
$$f_n: \mathbb{R}_+ \longrightarrow \mathbb{R}, \ f_n(x) = \frac{x}{nx+1}$$

3.
$$f_n: [0,1] \longrightarrow \mathbb{R}, \ f_n(x) = n^2 x e^{-nx},$$

4.
$$f_n: \mathbb{R} \longrightarrow \mathbb{R}, \ f_n(x) = \cos(\frac{1}{2^n}) + \frac{\sin(\frac{x}{n})}{n}$$
.

Exercice 40. Soit $(f_n)_{n\in\mathbb{N}}$ la suite de terme général défini sur \mathbb{R} par :

$$f_n(x) = \begin{cases} 0 & \text{si } x < 0\\ nx & \text{si } 0 \le x \le \frac{1}{n}\\ 1 & \text{si } x > \frac{1}{n} \end{cases}$$

- 1. Étudier la convergence simple de $(f_n)_n$ vers une fonction f. Représenter graphiquement f_1, f_2, f_3, f .
- 2. Que peut-on en déduire?
- **3.** Que se passe-t-il si on se restreint à $a, +\infty$ $[(a > 0), [-52, -41],]0, +\infty$

Exercice 41. Soit $(f_n)_{n\in\mathbb{N}}$ la suite de terme général défini sur $[0,+\infty[$ par :

$$f_n(x) = \begin{cases} 0 & \text{si } x \in [0, 2n\pi] \cup [3n\pi, +\infty[\\ \frac{|\sin(x)|}{n} & \text{sinon} \end{cases}$$

- 1. Étudier la convergence simple et la convergence uniforme de $(f_n)_n$ vers une fonction f que l'on déterminera.
- **2.** Calculer, si possible $I_n = \int_0^{+\infty} f_n(t)dt$ et $I = \int_0^{+\infty} f(t)dt$.
- 3. Mêmes questions avec

$$f_n(x) = \begin{cases} 0 & \text{si } x \in [0, 2n\pi] \cup [(2n+1)\pi, +\infty[\\ \sin(x) & \text{sinon} \end{cases}$$

Exercice 42. 1. Soit m un entier naturel, calculer l'intégrale $I_m = \int_0^1 f_m(x) dx$ où $f_m : x \mapsto \frac{2^m x}{1 + m 2^m x^2}$.

- **2.** Calculer $\lim_{m\to\infty} I_m = I$
- 3. Calculer $\lim_{m\to\infty} f_m(x) = f(x), \ \forall x \in [0,1].$
- 4. Que peut-on en déduire sur la convergence de $(f_m)_m$ vers f?

Exercice 43. Montrer que la série $\sum_{n=0}^{\infty} x(1-x)^n$ est convergente mais non uniformément convergente sur [0,2[.

Exercice 44. 1. Montrer que la série de fonctions de terme général

$$u_n: \mathbb{R} \longrightarrow \mathbb{R}, \ U_n(x) = \frac{(-1)^n e^{-nx^2}}{n^2 + 1}$$

converge normalement sur \mathbb{R} .

2. En déduire que $S = \sum u_n$ est continue sur \mathbb{R} .

Exercice 45. Domaine de définition, de continuité et de dérivabilité de la fonction définie par

$$f(x) = \sum_{n=0}^{\infty} \frac{e^{-nx}}{1+n^3}.$$

Exercice 46. 1. Étudier la convergence simple, uniforme, normale de $\sum f_n$ avec

$$f_n: \left| \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R} \\ x & \mapsto & \frac{nx^{n-1}}{1+x^n} \end{array} \right|$$

2. Soit $S = \sum_{n=1}^{+\infty} f_n$ sur l'intervalle de convergence. Montrer que $\lim_{x \to 1^-} S(x) = +\infty$.

Exercice 47. Pour x > 0, on pose $S(x) = \sum_{n=1}^{+\infty} \frac{1}{n + n^2 x}$.

- 1. Montrer que S est bien définie sur $\mathbb{R}^{+\star}$.
- **2.** Montrer que S est continue.
- **3.** Étudier la monotonie de S.
- **4.** Déterminer la limite en $+\infty$ de S.

Exercice 48. On rappelle que $\forall x \in \mathbb{R}, \sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$, et on pose pour x > 0,

$$S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(x+n)}$$

- 1. Justifier que S est définie et de classe \mathcal{C}^1 sur $\mathbb{R}^{+\star}$.
- **2.** Préciser le sens de variation de S.
- 3. Établir que $xS(x) S(x+1) = \frac{1}{e}$.

 Indication: on pourra poser le changement de variables p = n+1 dans l'expression de S(x+1).
- 4. Donner un équivalent de S en $+\infty$.

TD 4 : Sur les séries de Fourier

Exercice 49. Déterminer le domaine de convergence et la somme de la série de terme général :

$$u_n(x) = \frac{\cos(nx)}{a^n} + \frac{\sin(nx)}{b^n}, a > 1, b > 1.$$

Exercice 50. Développer en série de Fourier la fonction de période 2π :

$$f(x) = x, \ \forall x \in]-\pi,\pi[.$$

Exercice 51. Développer en série de Fourier la fonction de période π :

$$f(x) = x, \ \forall x \in]0, \pi[.$$

Exercice 52. 1. Développer en série de Fourier la fonction f, paire, 2π -périodique égale à $\pi - x$ pour $0 \le x \le \pi$.

- **2.** La série obtenue converge-t-elle simplement vers f?
- **3.** La série obtenue converge-t-elle uniformément sur $[0, 2\pi]$?
- **4.** Déduire du développement de f, la valeur de $\sum_{p=0}^{\infty} \frac{1}{(2p+1)^2}$.

Exercice 53. Développer en série de Fourier la fonction $f(x) = \frac{\pi}{4}$ pour $0 < x < \pi$, impaire, de période 2π et en déduire la somme $S = \sum_{p=0}^{\infty} \frac{(-1)^p}{2p+1}$.

Exercice 54. Soit $I_m \in \mathbb{R}^*$, on appelle courant redressé un courant de la forme :

$$I: \theta \mapsto \begin{cases} I_m \sin \theta & \text{pour } 0 \leqslant \theta \leqslant \pi, \\ 0 & \text{pour } \pi \leqslant \theta \leqslant 2\pi. \end{cases}$$

Quel est le développement en série de Fourier de $I(\theta)$?

Exercice 55. Soit f, la fonction paire, 2π -périodique telle que $\forall x \in [0, \pi], f(x) = (\pi - x)^2$.

- 1. Donner le développement en série de Fourier de f,
- **2.** En déduire $\sum_{n=1}^{\infty} \frac{1}{n^2}$, $\sum_{n=1}^{\infty} \frac{1}{n^4}$, $\sum_{p=0}^{\infty} \frac{1}{(2p+1)^4}$

Exercice 56. On considère la fonction réelle f(x) de la variable réelle x de période 2π qui pour $-\pi \leqslant x \leqslant \pi$ prend la valeur $x^2 - \pi^2$.

- 1. Calculer sa série de Fourier. Étudier sa convergence.
- 2. En déduire les valeurs des sommes des séries convergentes :

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \ et \ \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}.$$

3. Calculer $\sum_{n\geqslant 1} \frac{1}{n^4}$.

Exercice 57. Développer en série de Fourier la fonction (définie sur \mathbb{R}) $\phi(x) = \cos(ax)$ sur $[-\pi, \pi[$ avec $0 < a < 1, 2\pi$ -périodique.

Exercice 58. 1. Développer en série de Fourier la fonction f(x), impaire, de période 2π égale à $\pi - x$ pour $0 < x < \pi$,

2. en déduire la somme $S = \sum_{n=1}^{\infty} \frac{1}{n^2}$.

Exercice 59. Soit $f: \mathbb{R} \to \mathbb{C}$ 2π -périodique, impaire, telle que :

$$\left\{ \begin{array}{ll} \forall t \in]0, \pi[, & f(t) = 1 \\ \forall n \in \mathbb{Z}, & f(n\pi) = 0 \end{array} \right.$$

- 1. Développer f en série de Fourier.
- 2. Quelle est la convergence de cette série?
- 3. En déduire la somme $\sum_{p=1}^{+\infty} \frac{(-1)^p}{p^2}.$

Exercice 60. Soit $\alpha \in \mathbb{R} - \mathbb{Z}$. Soit $f_{\alpha} : \mathbb{R} \to \mathbb{R}$ 2π -périodique telle que :

$$\forall t \in [-\pi, \pi], f_{\alpha}(t) = \cos(\alpha t).$$

- 1. Représenter f_{α} .
- $\mathbf{2}$. Développer f en série de Fourier.
- 3. Quelle est la convergence de cette série?
- **4.** En déduire $\forall x \in \mathbb{R} \pi \mathbb{Z}$,

$$\sum_{n=1}^{+\infty} \frac{2x}{\pi^2 n^2 - x^2} = \frac{1}{x} - \frac{1}{\tan(x)} \quad \text{et} \quad \sum_{n=1}^{+\infty} \frac{2(-1)^{n+1} x}{\pi^2 n^2 - x^2} = \frac{1}{\sin(x)} - \frac{1}{x}$$

Exercice 61. Soit f, la fonction 2π -périodique telle que $\forall x \in]-\pi,\pi[,f(x)=\mathrm{e}^x.$

- 1. Déterminer le développement **complexe** en série de Fourier de f.
- **2.** Dériver $F(x) = (\alpha \cos(nx) + \beta \sin(nx))e^x$ et en déduire des primitives de $x \to e^x \cos(nx)$ et $x \to e^x \sin(nx)$.
- 3. Déterminer les coefficients de Fourier réels de f.

Exercice 62. Soient les fonctions f et g définies par $f(x) = |\sin(x + \frac{\pi}{3})|$ et $g(x) = |\sin(x)|$.

- 1. Tracer les courbes représentatives de f et g.
- **2.** Quel est le développement de Fourier de g?
- **3.** En déduire celui de f. Quels est son développement complexe?
- **4.** f et g sont-elles égales à leur développement de Fourier?
- **5.** Calculer $S_1 = \sum_{n \geqslant 1} \frac{1}{4n^2 1}$ et $S_2 = \sum_{n \geqslant 1} \frac{(-1)^n}{4n^2 1}$.
- **6.** Déterminer une suite $(u_n)_n$ réelle telle que

$$\forall t \in \mathbb{R}, |\sin(t)| = \sum_{n \geqslant 1} u_n \sin^2(nt).$$

TD 5 : Sur les séries entières

Exercice 63. Déterminer le rayon de convergence des séries entières réelles suivantes, et regarder la convergence aux extrémités du domaine de convergence :

1.
$$u_n(x) = n.x^n$$
.

3. *
$$u_n(x) = \frac{n!}{n^n} . x^n$$

5.
$$u_n(x) = (\frac{nx}{n+1})^n$$

2.
$$u_n(x) = \frac{1}{n^n} . x^n$$

$$\mathbf{4.} \ u_n(x) = x^n \ln n$$

1.
$$u_n(x) = n.x^n$$
, 3. * $u_n(x) = \frac{n!}{n^n}.x^n$, 5. $u_n(x) = (\frac{nx}{n+1})^n$, 2. $u_n(x) = \frac{1}{n^n}.x^n$, 4. $u_n(x) = x^n \ln n$, 6. $u_n(x) = (\frac{1}{n!} + \frac{1}{n})x^n$.

Pour étudier la convergence de la série 3. sur le bord de l'intervalle, on utilisera la formule de Stirling : $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Exercice 64. On considère la suite réelle définie par récurrence par :

$$u_n = \sin u_{n-1} \text{ avec } 0 < u_0 < \frac{\pi}{2}.$$

- 1. Montrer que la suite (u_n) est décroissante et minorée.
- 2. En déduire que cette suite converge, puis calculer la valeur de cette limite.
- 3. Déterminer le rayon de convergence de la série de terme général $v_n(x) = u_n x^n$.

Exercice 65. Déterminer le rayon de convergence des séries entières suivantes (et regarder au bord):

- 1. $\sum_{n\geq 0} a_n x^n$ avec $a_n=1$ si n pair et $a_n=\frac{1}{n}$ si n est impair,
- 2. $\sum_{n\geqslant 2} \frac{1+n^{n-2}}{n^n} x^n$, $\sum_{n\geqslant 2} -\frac{1}{n^2} x^n$ et la série dont le terme général est la somme de celui des deux précédentes.

Exercice 66. En utilisant uniquement la formule $\forall x \in]-1,1[,\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n,$ et les résultats vus en cours sur les séries entières, trouver le développement en série entière des fonctions suivantes (préciser leur rayon de convergence) :

1.
$$\frac{1}{1-x^3}$$
,

2.
$$\frac{3x^2}{(1-x^3)^2}$$
,

3.
$$x \ln(1-x^3)$$
.

Exercice 67. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = \arctan(\frac{1-x^4}{1+x^4})$.

- 1. Déterminer le développement en série entière de f au voisinage de 0 sur un intervalle de convergence à préciser.
- 2. Retrouver le rayon de convergence de la série obtenue.

(Rappel:
$$(x \mapsto \arctan x)' = \frac{1}{1+x^2}$$
.)

Exercice 68. Trouver le domaine de convergence et la somme des séries :

- 1. $u_n(x) = 2x^n, \ n \geqslant 3,$
- **2.** $u_n(x) = x^n \sinh na$, a > 0 (on rappelle que pour $t \in \mathbb{R}$, $\sinh t = \frac{e^t e^{-t}}{2}$).

Exercice 69. Quels sont les rayons de convergence des séries entières

1.
$$u_n(x) = (-1)^{n-1} \frac{x^{n-1}}{n}$$
,

1.
$$u_n(x) = (-1)^{n-1} \frac{x}{n}$$
,
2. $v_n = (-1)^{n-1} \frac{x^n}{n(n+1)}$?

Calculer leurs sommes U(x) et V(x) (on calcule la somme à partir de n=1).

Exercice 70. Déterminer les fonctions de développement en série entière :

1.
$$f_1(x) = \sum_{n \geqslant 1} \frac{(-1)^{n-1} x^{2n-1}}{2n-1}$$
,

2.
$$f_2(x) = \sum_{n \ge 1} (2n-1)x^{2n-2}$$
,

3.
$$f_3(x) = \sum_{n \ge 1} n(n+1)x^{n-1}$$
.

Exercice 71. Calculer les sommes, en précisant le domaine de convergence de :

1.
$$f_1(x) = \sum_{n \ge 1} \frac{n}{x^n}$$

2.
$$f_2(x) = \sum_{n \geqslant 1} \frac{x^{4n-3}}{4n-3}$$
,

3.
$$f_3(x) = \sum_{n \ge 1} (-1)^n n x^n$$
.

Exercice 72. Trouver les solutions développables en série entière de l'équation différentielle: xy'' + y = 0.

Exercice 73. Trouver les solutions développables en série entière de l'équation différentielle : $xy'' + 3y' - 4x^3y = 0$. Reconnaître ces solutions.

Exercice 74. Trouver les solutions développables en série entière de l'équation différentielle : $x^2y'' + 4xy' + (2 - x^2)y = 1$. Reconnaître les solutions.

Exercice 75. Déterminer le développement en série entière des fonctions :

$$f_1: x \mapsto \int_0^x e^{-t^2} dt$$
, $f_2: x \mapsto \int_0^x \frac{\sin(t)}{t} dt$.

Exercice 76. Calculer sous forme de série l'intégrale $I = \int_0^{+\infty} \ln(1 + e^{-x}) dx$ après en avoir montré la convergence. En déduire la valeur de l'intégrale.